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AbslracL The percolation and clustering in binaly mixlureswith strong altraction between 
unlike particles is investigated. More specifically, we consider a binary mixture in which 
the interaction klween unlike panicles is described by Baler’s sticky hard sphere (SHS) 
potential, while the interaction amongrl the Same species is the hard sphere repulsion. 
The Omstein-=mike (02) equation for lhe pair connectedners is solved under the 
Percur-Yevick (PY) approximalion. The percolation line always approaches zero as the 
density vanishes and also percolation only occurs above some lower limit of density. 
The percolalion line is compared with the phase fraansilion line and i t  is found that 
the existence of the phase transition line restricts the range of concenlration for which 
percolation occurs. Moreover. the influences of density, srickiness, concentration and 
panicle Size on the pair connectedness, percolation line, mean clusler size and the 
coordination number are examined. 

1. Introduction 

The study of clustering and percolation behaviour in disperse particles is related to a 
wide range of phenomena; of these we are particularly concerned with the behaviour 
of dispersion of strongly interacting macroparticles, e.g. colloids. Although there are 
problems with the precise definition on what constitutes a physical cluster 111, the one 
introduced by Hill [2] (see below) has been widely used in the literature. Coniglio 
ef a1 [3,4] used Hill’s concept of a physical cluster to derive a general expression for 
the average number of physical clusters in a system in order to study the equilibrium 
distribution of these clusters and develop a theory of the pair connectedness for one 
component systems. 

In analogy with the pair correlation function in liquid theory, the central quantity 
in Coniglio’s approach is the pair connectedness function p(r ) ,  which is proportional 
to the probability that two particles belong to the same cluster with a separation of r. 
Coniglio et al (41 obtained an Ornstein-Zernike (02) integral equation and Percus- 
Yevick (PY) closure for the pair connectedness functions as well as the expression 
of the mean cluster size for continuous systems, which is the key to finding the 
percolation threshold, i.e. the density at which an infinite cluster forms. 

Following the work by Coniglio et al , percolative behaviour has been investigated 
for different systems and the 02 equation has been solved both analytically and 
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numerically, and compared with computer simulations. Analytic solutions of the 
connectedness from the 02 equation in the PY approximation for permeable spheres 
and sticky hard sphere (SHS) systems have been obtained by Chiew and Glandt [SI. 
Demisone el a2 [6] solved the 02 equation in the Same approximation analytically €or 
extended spheres. Xu and Stell [7] determined the pair connectedness function and 
the percolation threshold for a system interacting via a pair potential with a hard core 
and Yuhwa tail in the mean spherical approximation. Numerical methods have been 
used by Netemeyer and Glandt [SI to  examine the percolation of square well fluids. 
Monte Carlo simulations of percolation have been carried out for several systems; e.g. 
the SHS by Seaton and Glandt [9,10], and the square well by Chiew and Wang [ll].  

More recently there have been extensions o€ the above studies to the case of 
binary mixtures. Chiew and Stell [12] have extended the formalism of Coniglio et 
al to mixtures. The model potentials used in their study are randomly centered and 
permeable spheres. The influences of density on the pair connectedness functions 
and concentration on the percolation thresholds were examined. Wu and Chiew [13] 
studied the percolation in binary mixtures of randomly centered spheres when particle 
clustering is selective, that is, only particles of different species are allowed to be phys- 
ically bound. They found that the percolation threshold depends on concentration, 
while Cor the non-selective case it does not. 

More recently, Chiew and Glandt [14] discussed the percolation in binary mixtures 
of SHS, where sticky attractions only occur among like species with hard sphere 
repulsion between unlike particles. They determined the analytical expressions for 
the pair connectedness and the mean cluster size and then examined the influences 
of different parameters, like the packing fraction, attractive strength, particle size, on 
the cluster formation in the system. The general shapes of the pair connectedness 
are similar to the one component sticky situation. Also the unphpical result of the 
percolation line approaching a finite value as density tends to zero still held as in 
the one component SHS result. This mcant that the system will percolate even at 
vanishingly small density (91. 

The present work also attempts to investigate percolation in binary mixtures of 
SHS, but the situation considered here is that the interaction between u n l i e  particles 
is SHS, while hard sphere repulsion is found amongst the same species. The definition 
for connectivity is the overlap of particle cores. Since the bound energy between like 
particles is zero, the clustering is also selective. The ‘physics’ is quite different from 
the system studied by Chiew and Glandt [14]. We find that the percolation line goes to 
zero as density approaches zero and there can be lower limits on the density at some 
special conditions; below these limits percolation is impossible. Usually the curves 
of mean cluster sue rise drastically as the density approaches percolation threshold, 
which indicates the clustering procedure in this system is not gradually developed. 
By solving the oz equation, which is a group of coupled integral equations here, 
the pair connectedness functions exhibit different behaviours compared with Chiew 
and Glandt’s [14] results. Another gauge of the extent of aggregation is the partial 
coordination number Z,,(r,) [15] which is defined as the average number of type-j 
particles within a distance r ,  of a type4 particle. The effects of changing stickiness 
and ratio of diameters on Z, are examined. 

The article is organized as follows. The model as well as relevant formulas are 
presented in section 2. Section 3 gives the expressions of physical quantities used to 
discuss percolation. The results and analyses are reported in section 4. Conclusions 
and possible extensions are given in the last section. 
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2. The model 

We consider a system of two components with number density pi, i = 1,2.  Baxter’s 
[16] SHS potential, according to Barboy’s [17] convention, can be defined as 

where p is the inverse of Boltzmann’s constant times the temperature T, rij are stick- 
iness parameters which can be considered as dimensionless measure of temperature 
with - 0 axresponding to hard sphere interaction. Diameters of particles are 
assumed additive and satisfy 

d. .  ‘I = (d ,  +d , ) /2 .  ( 2 )  

The transformation of the 02 equation for mixtures is given by Baxter [IS] and can 
be solved analytically by the factorization method 1191. By virial expansions of the 
pair distribution functions gij(r), we can write [ 171 

1.. 
gi,(r) = L 6 ( r  - dji) 

dij 
0 < r < dij  (3) 

where 

The equations to determine the parameters X j j  are 

This equation is crucial in the study the phase behaviour of the system. 
Only unlike particles interact by sticky attraction and the hard sphere potential 

acts among particles of the same species; that is T ~ ,  is to be a finite value, while 
T,,, T~ - 00, equation (6) then becomes 

A,, = A,, = 0 

According to Barboy [20],  the system cannot exhibit discontinuous phase separa- 
tion since .Alz is finite and continuous within the physically allowable density range 
0 < c3 < 1. However, by the requirement of convergence of the total correlation 
function, A,, has to satisfy 

A12 < 3 +  [ (3+ 5) (3+ 31 112 
(9) 
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where vi = 7rpidi/6 is the packing fraction of the ith species. Therefore, the con- 
clusion drawn by Barboy is that there exists a 'critical temperature' r& depending 
on concentration and ratio of particle diameters, where a fluid-fluid discontinuous 
transition between states of different concentrations and densities will occur when 

< G2 if the difference of particle size is large. 
We give the expression for +:? explicitly by equation (8) and equation (9) 

The relation with percolation 'temperature' will be examined in the final section. 

3. Connectivity and percolation of the model 

We list below the extension to mktures of Coniglio's formulation derived by Chiew 
and Sel l  [I21 for convenience. 

The pair connectedness for isotropic systems, p; . (r) ,  is defined such that 
pippi(lrl - r21)drldr2 is the probability that two particles from components i a n d j  
are in volume elements d q ,  dr ,  simultaneously and physically bound. p&r) satisfies 
the oz equation 

Here sij is defined as 

s.. = (d;; - di j ) /2 .  'I 

Boltzmann's factor can be divided into two parts 

where direct connectedness cji(r) t is the non-nodal graphs of phs graphic expansion. 
Define 

The mean cluster size S is given by 



Percolation in binary mixtures 5607 

where ci = pJp, p = pl +p2,  qT(0)-l is the transpose of the inverse matrix of (qii(0)). 
The percolation threshold is the density at which S is divergent 

Our solution of the percolation problem for the present system is listed as follows. 
With the core overlap defined as two particles being bound physically, it can be 

shown that 

(17) 

(18) 

exp(-pu,(r)) t = (di,/2qi)6(r - d,)( 1 - $) 

exp(-pu;(r)) = O(r - di j ) .  

Here O(r - d + )  is the Heaviside step function. By the PY approximation 

I! ,i!'.: p.@)l= 'I ( r , , M p ( r  - di)[l - 6,)  r < dij (19) 

q!.(r) 81 = -~..6(r 'I - dj j ) (  1 - 6,) se c r < d,. (20) 

q,(r 2 dg) = 0 

and equation (11) is changed into 

Using the condition 

(21) 

we obtain, after trivial integration 

Substituting (22) into (15) and letting q = 0, we find 

q. . (O)  'I = bg - 27rJp;iied,(l - 6e), 

We transform equation (16) into 

Inserting equations (4) and (23) into (24), the result is 

where 

detq(0) = 1 - 
(1 - E # '  

The pentolation threshold is determined by 

detq(0) = 0. 
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By combining equations (26), (27) and (S), we obtain the expression for the percola- 
tion l i e  

The partial coordination number Z,,, which is the average number of type2 particles 
that contact with a type-1 particle directly due to the 6-function singularity in 0, can 
be obtained easily by integrating equation (3) 

Substituting equation (20) into equation (ll), the 02 equations for pii(r) are a group 
of coupled integral equations 

We have solved the 02 equations, in conjunction with (19), using the algorithm 
due to Perram [21]. All results and discussion are presented in the next section. 

4. Results and discussion 

The non-singular part of pair connectedness functions are presented in figures 1-6. 
These have been obtained by the solution of the 02 equation by Perram's algorithm. 
As can be seen from figures 1-3, general shapes o f p , , ( r )  andp2,(r) are similar to the 
one component SHS cases [9,10,14]. This is due to two like particles being connected 
by intermediate unlike particles with interaction potential SHS. The functionp,,(r) has 
a quite different shape since in this situation, a chosen component-2 particle plays 
the role of 'adsorption' centre of the hard sphere p a r t i c k  These shapes for p 1 2 ( r )  
are shown in figures Jd as well the previous figures. 

Figure 1, together with figures 2 and 3, shows the discontinuities in PI,(') and 
p Z 2 ( r )  due to the influence of the delta function in pI2(lr - 1 1 )  occurring at r = d,,, 
d,, and d,,  + d,. This delta function also determines the discontinuities of the 
derivative in pI2(r) as shown in figures 46. It can easily be shown that these occur 
at r = d, ,  fd,, d,, + d , ,  and d,, + d ,  +d, , .  This is confirmed by the computations. 

The pair connectedness at percolation density is shown in figure 2, all other 
conditions being the same as in figure 1. AI1 these three functions become long range 
as expected. 
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Figure 2. As Sgure 1, but for p = 0.147 
(close lo the percolalion threshold). 
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Figure 3. Pair-connectedness p11 (non- 
singular pan) for different stickiness wilh - _  

1 other parameters as in figure 1. Full - _ - * -  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 curve, T I ~  = 0.12; bmken curve. it2 = 

Tldu 0.h; long broken c u m ,  712 = 1.8. 

The influence of stickiness onpll(r)  is shown in figure 3. p l l ( r )  decreases rapidly 
as the decrease of stickiness. Similar behaviour can be found for pZ2(r)  and PI*('). 
Also note the same effect in figure 4 onplz (r ) ;  as rlZ increases the pair connectedness 
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long broken curve, c1 = 0.9. 
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Figure 6. Pair-connectedness p12 (non. 
singular pan) for different densities with 
other parameters as in figure 1. Full 
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. 
' cuwe, p = 0.05; broken cure ,  p = 0.03; 

v l d u  

function tends to the hard sphere value, i.e. vanishing everywhere. Figures 5 and 6 
respectively show the effect of change in concentration and the change of the total 
density of the system. The effect of concentration shows the change in connectivity 
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curve, cl 0.3; broken curve, CI = 1.0; 
long broken curve. c1 = 0.7. 

Figure 9. Permlalion line TL and phase 
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With change in concentration. The decrease in connectivity is due to the reduced 
effect of the attraction between unlike particles-the magnitude of this decrease 
being affected by the ratio of diameters. In the case of the lowering of density the 
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connectivity again decreases. 

in figures 7 to 9. 
Different features of the percolation line, defined by equation (28) are displayed 1:::mi 600 

m 
400 

I 
I 

/ Figure 10. Mean cluster size S with pa- 
/ rameten dzJdl, = 1.0, c1 = 0.5. Full 

cun’e. == 0.2; broken c u m ,  T I ~  = 0.6; 
long broken CUM, T,? = 1.0. 
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, ’  , /  Figure 11. Coordination number 212 for 

du/dti = 1.0,q = 0.5. Full curve, 712 = 
0.0 0.1 0.2 0.3 0.4 0.5 0.2, broken cuwe, 712 =“U:4; long broken 

/ /  

, , . , .,,,,, . I , , . , , . . . . , , , , , , . ,_, , . , . . , ,  0.0 ~. 

When considering the one component SHS system [4] and also the binary mixtures 
with strong attraction between like species [14], the percolation line was found to 
approach a finite value when the density went to zero which meant that percolation 
always occurred for these systems even at zero density-an unphysical result. The 
result for the present system is quite different The percolation line always goes to 
zero as density vanishes. Figure 7 shows that the percolation threshold increases as 
the ratio of diameters decreases. Figure S shows the percolation lines for differing 
concentrations keeping the ratio of diameters fzed. For the case displayed by the 
broken curve in figure 7 and full curve in figure 8, it is apparent that there exist lower 
limits of density below which percolation never occur, i.e. where the percolation line 
becomes negative. 

A plot of percolation ‘temperature’ rp2 against c2 at fixed density is shown in 
figure 9. The percolation area is the portion enclosed by the percolation line with 
concentration as the variable. Figure 9 shows that there is a range of concentration 
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Figure 12. Zn with c1 = 0.5, '12 = 
0.0 0.5. Full curve, dn fd l l  = 0.5; broken 

0.4 0.6 0 8  1.0 cuwe, dn f d l l  = 1.0; long broken curve, 
P41 d u  f d l l  = 1.5. 
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Figure 13. Zlr for different concentration 
with dufd,, = 1.0, 7x2 = 05. Full curve, 
ct = 0.3; broken curve, c1 = 0.5; long 
broken curve, c1 = 0.7. 

beyond which percolation is impossible. The phase transition line , expressed by 
equation (10) [20], is given by the broken curve which lies totally within the per- 
colation area. The area enclosed by the phase transition line is unphysical due to 
the divergence of the total correlation functions and will diminish as the ratio of 
diameters increases [20]-this further restricts the values of concentration for which 
percolation can occur. 

Bug el al [22] have observed by Monte Carlo studies for square-well systems 
that increase of attraction can either raise or lower the percolation threshold. The 
main reason, indicated by Seaton and Glandt 19, IO] is their more liberal definition 
of connectivity. Because the definition of core-overlap connectivity is used here, 
figure 10 shows that increasing attraction, i.e. increasing stickiness, always lowers the 
percolation threshold. 

The partial coordination number Z,, is plotted as a function of reduced density 
for different values of stickiness in figure 11, for different ratios of diameters 

in figure 12 and for different concentrations in figure 13. Figure 11 displays that 
Z,, increases with increasing rI2 for tixed density as it should be. Figure 12 shows 
the effect of the ratio of diameters on Z,, at constant stickiness and concentration. 
The influence of concentration on Z,, is displayed in figure 13, Z,, decreases as c1 
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increases (i.e. c, decreases) for a given density and stickiness. All curves show that 
Z,, is a monotonically increasing function of the density. 

5. Conclusion 

Several new features appeared in the present system when percolation is studied. 
Concentration plays a more important role than in Chiew and Glandt’s 1141 model. 
With the ‘extended sphere’ 1131 as the definition of connectivity of two like particles, 
it is possible to observe that the increase of attraction may raise or lower percolation 
threshold, the difficult point of this extension is to solve the coupled 02 equations 
analytically in order to find closed expressions for gi , ( r )  i = 1,2 in the second shell 
d ,  < r < Z,,. Another possible extension of the present model is to take the 
‘permeable sphere’ as the potential of like particles; structure, thermodynamics and 
percolation could then he studied. Generally speaking, percolation or ‘compound 
forming’ should be easier in this case since repulsion between like particles is not as 
strong as the hard sphere potential. One more input parameter is needed for both 
possible extensions mentioned above. 
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